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Orthonormal wavelet transformations are used to decompose velocity signals of grid
turbulence into both space and scale. The transforms exhibit small-scale enhancements
of (i) the spatial fluctuation, (ii) the correlation in space between the adjacent scales,
and (iii) the correlation in space between the longitudinal and transverse components.
The spatial fluctuation and the scale–scale correlation at small scales are more
significant in the transverse component than in the longitudinal component. These
features are the same for different families of wavelets.

Turbulence contains tube-like structures of vorticity. We demonstrate that wavelet
transforms of velocities are enhanced at the positions of the tubes, by using a direct
numerical simulation. Thus our wavelet analyses have captured the effects of those
coherent structures on velocities measured in the experiment, which would be difficult
for traditional analysis techniques such as those with velocity increments.

1. Introduction
The classical theory of Kolmogorov (1941a) postulates that turbulence is space-

filling at all scales, from the largest scales where the kinetic energy is input, to the
smallest scales where the kinetic energy is converted into the thermal energy. However,
in practice, the small-scale fluid motion is active only in a fraction of the volume
(Batchelor & Townsend 1949). This phenomenon of ‘intermittency’ is crucial to our
understanding of turbulence (see Nelkin 1994; Frisch 1995; or Sreenivasan & Antonia
1997 for a review).

Experiments on turbulence are usually made with a single probe suspended in a
flow. Then the standard procedure is to compute the velocity increment u(x+δ)−u(x),
where u(x + δ) and u(x) are velocities at two points separated by a distance δ in
the mean-flow direction. Though invaluable information on intermittency is obtained
from statistics of the increments for the individual scales (Anselmet et al. 1984), more
rigorous space–scale decompositions of the velocity data are required to proceed
further. This situation calls for a new approach using ‘orthonormal wavelets’, which
are self-similar functions localized both in space and scale.

There are several known families of orthonormal wavelets (Haar 1910; Meyer
1985–1986; Daubechies 1988; Mouri & Kubotani 1995). A wavelet family constitutes a
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complete orthonormal transformation, being analogous to the Fourier transformation
based on sinusoidal functions. The transform corresponds to variations in the signal
at a given scale and a given point, because a wavelet function has a zero mean.
Hence there is a close resemblance of wavelet transforms of a certain scale to
velocity increments over such a scale (Yamada & Ohkitani 1991; Meneveau 1991).
We underline that wavelet transforms are more focused on given scales and thus
preferable for studying the intermittent structures.

The space–scale decomposition has already been realized by band-pass filtering
techniques (Kuo & Corrsin 1971) and redundant transformations based on ‘contin-
uous (non-orthonormal) wavelets’ (Argoul et al. 1989; Farge 1992). However, our
approach is different from theirs. Orthonormal wavelets have a unique advantage
that the transforms are mutually independent and retain the same information as the
original data. This advantage makes the interpretation of the results more reliable, es-
pecially in the cases of statistical studies (Yamada & Ohkitani 1991; Meneveau 1991).

Following the pioneering works of Yamada & Ohkitani (1991) and Meneveau
(1991), we apply orthonormal wavelets to statistical analyses of turbulent velocity
fields. Our analyses are conducted with five different families of wavelets (§ 2), in
order to assess the reliability of the results with respect to the choice of wavelet. The
data to be studied are of both the longitudinal and transverse velocities obtained
from a laboratory measurement of a flow behind a grid (§ 3). We introduce wavelet
diagnostics of intermittency, and calculate them from our data (§ 4). Turbulence
is believed to contain structures of vorticity and dissipation rate. We discuss our
results in connection with those structures, by using a direct numerical simulation of
homogeneous three-dimensional turbulence (§ 5).

2. Orthonormal wavelet transformation
This section explains the concept of orthonormal wavelets in the framework of

‘multi-resolution analyses’ (Mallat 1989). We do not go into the details: readers are
referred to the review by Farge (1992). We also discuss how to interpret the transforms
of the velocity data.

2.1. Wavelets

Wavelet transformations are constructed on the basis of a ‘mother wavelet’ w(x) and
a ‘scaling function’ s(x). They are localized both in space and scale. The mother
wavelet has a zero mean and thus extracts variations of a signal. The scaling function,
the integral of which from −∞ to +∞ is unity, is an averaging function. From the
mother wavelet, the wavelet functions wj,k(x) are created through discrete dilation
and translation:

wj,k(x) = 2j/2 w(2jx− k) (j, k ∈ Z). (1)

The indices j and k specify the scale of the wavelet and its position on the x-axis,
respectively. Likewise, we have

sJ,k(x) = 2J/2 s(2Jx− k) (J ∈ Z). (2)

Then any square-integrable function u(x) is reconstructed as

u(x) =

+∞∑
k=−∞

ūJ,k sJ,k(x) +

+∞∑
j=J

+∞∑
k=−∞

ûj,k wj,k(x). (3)
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Here the wavelet transform ûj,k and the scaling-function transform ūJ,k are, respec-
tively, the inner products of u(x) with wj,k(x) and sJ,k(x). The transformation (1)–(3)
is defined for the individual wavelets (see below), which offer different representations
of the same signal.

Wavelets make trade-offs between how compactly they are localized in the space
regime and in the wavenumber regime. The wavelet of Haar (1910) is an extreme
example, which is a sharp pulse in space and thus poorly concentrated in wavenumber:

w(x) =


+1 for 0 6 x < 1

2

−1 for 1
2
6 x < 1

0 elsewhere,

(4)

s(x) =

{
+1 for 0 6 x < 1

0 elsewhere.
(5)

We have Harmonic wavelets at the opposite side of the uncertainty principle (Newland
1993; Mouri & Kubotani 1995):

w(x) =
sin (2πx+ ϕ)− sin(πx+ ϕ)

πx
(0 6 ϕ 6 π/2), (6)

s(x) =
sin(πx)

πx
. (7)

The parameter ϕ determines the shape of the mother wavelet. The other types of
wavelets are intermediate between these two extremes.

2.2. Implementation of wavelets

Practical applications of wavelets require discrete transformations. This is because a
function u(x) is sampled as a sequence u[n] = u(n∆), where ∆ denotes the sampling
interval. The length of the input signal is required to be a power of 2 (n = 0 to
2N − 1). We assume that the signal and the basis functions are periodic with a period
of 2N . Then the reconstruction formula (3) is replaced by

u[n] =

2J−1∑
k=0

ūJ,k sJ,k[n] +

N−1∑
j=J

2j−1∑
k=0

ûj,k wj,k[n] (1 6 J 6 N − 1). (8)

Here the basis functions remain complete and orthonormal.
Figure 1 shows examples of wavelets (solid lines) and scaling functions (dotted

lines) for N = 13, j = J = 9, and k = 256 (left panels). Their power spectra in the
wavenumber domain are also illustrated (right panels). We have already mentioned
Haar’s and Harmonic wavelets defined on the real line. The general forms of discrete
Haar’s base are

wj,k[n] =


+2−(N−j)/2 for n = 2N−jk to 2N−jk + 2N−j−1 − 1

−2−(N−j)/2 for n = 2N−jk + 2N−j−1 to 2N−j(k + 1)− 1

0 elsewhere,

(9)

sJ,k[n] =

{
+2−(N−J)/2 for n = 2N−Jk to 2N−J(k + 1)− 1

0 elsewhere.
(10)
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Figure 1. Wavelets (solid lines) and scaling functions (dotted lines) with N = 13, j = J = 9, and
k = 256: (a) Haar’s (b) Daubechies’ 20-tap, (c) Meyer’s, and (d) Harmonic (ϕ = 0). Their power
spectra in the wavenumber domain are shown in the right column. The spectra of the Harmonic
base are computed from the scalar products with exp (i2π(m + 1/2)n/2N), instead of the usual
exp (i2πmn/2N), where m is the wavenumber (Appendix A).

The 20-tap wavelet of Daubechies (1988) is another function that is compact in space.
It is more localized in wavenumber than Haar’s. The wavelet of Meyer (1985–1986) is
compact in wavenumber. It is more localized in space than Harmonic wavelets. These
four types of bases are used in our analyses to follow. The numerical algorithms are
from Strang (1989), Press et al. (1992), Yamada & Ohkitani (1991), and Mouri &
Kubotani (1995, see also Appendix A).
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2.3. Meaning of wavelet transforms

The space–scale localization and the zero average indicate that a wavelet wj,k[n]
extracts signal variations of the scale 2N−j−1 around the point n = 2N−jk (Yamada
& Ohkitani 1991; Meneveau 1991). For example, the Haar-wavelet transform ûj,0 is
given by

ûj,0 = 2−(N−j)/2(u[0] + · · ·+ u[2N−j−1 − 1]− u[2N−j−1]− · · · − u[2N−j − 1]). (11)

The product 2(j+2−N)/2ûj,0 is equal to the average of the differences u[n]−u[n+2N−j−1]
with n = 0 to 2N−j−1 − 1. Thus wavelet transforms of velocities are analogous to
velocity increments:

|u(x+ δ)− u(x)| ∼ 2(j+2−N)/2|ûj,k|, (12)

with

x ∼ 2N−jk∆ and δ ∼ 2N−j−1∆. (13)

There are two fundamental differences. First, increments are determined by variations
of scale δ or less, while wavelet transforms are concentrated on given scales. Second,
except for Haar’s base, wavelets oscillate many times so that the signs of the transforms
are of no physical interest.

We base our analyses on moments of wavelet transforms. The signal is divided into
M segments of 2N points. To each of them, the wavelet transformation is applied. The
wavelet moment for a certain scale is obtained by averaging over all the segments
and k-locations:

〈ûq〉j =
1

M

1

2j

M∑
m=1

2j−1∑
k=0

û
q
m,j,k (q ∈ Z+, 1 6 j 6 N − 1). (14)

Here m indicates that the transform belongs to the mth segment. The first-order
moment is the average. When u[n] is a random signal, 〈û〉j converges to zero at large
M. The second-order moment is related to the energy; û2

m,j,k provides the local energy

of a given scale at a given position, and 2j〈û2〉j provides the total energy of the scale.
In general, a wavelet moment of an even order corresponds to the ‘structure function’,
i.e. moment of velocity increments, at the same order:

〈ûq〉j ∼ 2(N−j−2)q/2〈(u(x+ δ)− u(x))q〉 (q/2 ∈ Z+). (15)

Here 〈 〉 means the spatial average. For another character of wavelet transforms, see
Appendix B.

2.4. Removal of end effects

Except for the case of Haar’s base, it follows from the periodic boundary condition
that some wavelet transforms at each scale are affected by data from both ends of
the input signal. The discontinuity between the signal ends could be mistaken as a
structure, especially at small scales. This end effect is removed by adding half-lengths
of data to each end before performing the transformation (Meneveau 1991). When
we are interested in a signal segment um[n] from n = 0 to 2N − 1, we consider in
addition the adjacent segments on both sides, forming a new segment of length 2N+1,
as illustrated in figure 2:

u′m[n′] =


um−1[n

′ + 2N−1] for n′ = 0 to 2N−1 − 1

um[n′ − 2N−1] for n′ = 2N−1 to 2N−1 + 2N − 1

um+1[n
′ − 2N−1 − 2N] for n′ = 2N−1 + 2N to 2N+1 − 1.

(16)
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Figure 2. Schematic representation of our method to remove the end effect.

The wavelet transforms are obtained for j ′ = 1 to N and k′ = 0 to 2j
′ −1. However, the

subsequent analyses are restricted to the original scales and positions: j = j ′ − 1 = 1
to N − 1 and k = k′ − 2j

′−2 = 0 to 2j − 1. In our following studies, the end effect
is no longer serious. This fact has been ascertained by increasing and decreasing the
numbers of the transforms analysed.

3. Experiment
The experiment was done in the wind tunnel of Meteorological Research Institute.

The test section of the tunnel is 3 m× 2 m in cross-section and 18 m in length.
Turbulence was produced by placing a biplane grid across the entrance to the test
section. The grid consisted of two layers of uniformly spaced rods, the axes of which
were perpendicular to each other. The rods were 4 cm× 4 cm in cross-section. The
axes of the adjacent rods were separated by 20 cm. The turbulent flow is anisotropic
at scales > 1 m. This is mainly due to the limitation of the size of the wind tunnel. In
addition, the oriented and inhomogeneous character of the largest-scale flow at the
grid position persists downstream. Nevertheless, at the smaller scales, the turbulence
is expected to be isotropic.

The longitudinal (U + u) and transverse (v) velocities were measured with a hot-
wire anemometer. Here U is the average while u and v are the fluctuations. The
anemometer was composed of a crossed-wire probe (Dantec, 55P54) and a constant-
temperature system (Dantec, Model 5600). The probe was positioned on the tunnel
axis at 3 m downstream of the grid. The hot wires were platinum-coated tungsten
filaments, 5 µm in diameter, 1.25 mm in length, 1.25 mm in separation, and oriented
at ±45◦ to the mean-flow direction. Pitch-angle calibration was done in the tunnel
before the experiment. The signals were recorded at an interval of 150 µs, after low-
pass filtering at 7 kHz (Krohn-Hite, Model 3322, 24 dB/octave) and digitized with
12-bit resolution (Canopus, ADXM-98L).† The analog filter was used to remove the
spike noise, which was due to electromagnetic pulses from the motor of the wind
tunnel. The entire length of the signals was long (∼ 107 points), because we need to
minimize the statistical uncertainties.

The turbulence level, expressed by the ratio of the root-mean-square value of

the longitudinal fluctuation (〈u2〉1/2 = 0.54 m s−1) to the mean longitudinal velocity
(U = 8.65 m s−1), was as small as 0.06. Hence we base the following analyses on the
frozen-eddy hypothesis of Taylor (1938), ∂/∂t = −U∂/∂x, which converts temporal

† To avoid aliasing, the sampling frequency has to be at least twice of the highest frequency
present in the analog signal, i.e. the cutoff frequency of the analog filter. This requirement was not
satisfied. Nevertheless, in practice, the aliasing does not affect our analyses. The energy spectra in
figure 3 go towards zero as the frequency approaches the sampling frequency. If the aliasing were
significant, the spectra would go towards some non-zero value.
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Figure 3. Energy spectra of the turbulent flow behind the grid. These are obtained by averaging
over 1200 segments of the data, each of which is made of a series of 8192 points. We indicate the
−5/3 power law of Kolmogorov’s spectrum. The wavenumber is in m−1, instead of usual radian
m−1.

Mean velocity at hot wire location U = 8.65 m s−1

R.m.s. velocity fluctuation (longitudinal) 〈u2〉1/2 = 0.54 m s−1

R.m.s. velocity fluctuation (transverse) 〈v2〉1/2 = 0.52 m s−1

Kinematic viscosity ν = 0.0000141 m2 s−1

Mean energy dissipation rate 〈ε〉 = 15ν〈(∂u/∂x)2〉 = 0.99 m2 s−3

Integral length L =
∫ 〈u(x+ δ)u(x)〉/〈u2〉dδ = 0.24 m

Taylor microscale λ = (〈u2〉/〈(∂u/∂x)2〉)1/2
= 0.0079 m

Kolmogorov length η = (ν3/〈ε〉)1/4 = 0.00023 m

Reynolds number Reλ = 〈u2〉1/2λ/ν = 300
Inertial range δi = 0.008–0.016 m
Sampling interval ∆ = 0.00015 s
Number of points M × 2N = 1200× 8192

Table 1. Summary of experimental conditions. The scales are all in the mean-flow direction. The
ranges of the measured fluctuations are −2.49 m s−1 6 u 6 3.06 m s−1 and −2.92 m s−1 6 v 6
3.36 m s−1.

variations into spatial variations in the mean-wind direction. The applicability of
Taylor’s hypothesis has been summarized in Champagne (1978).

We compute the energy spectra in the wavenumber domain, by averaging over
1200 segments of the data, each of which is made of a time series of 8192 points. The
spectra are illustrated in figure 3. A straight line denotes the −5/3 power law, i.e.
Kolmogorov’s spectrum for the inertial range. From the spectra, it is evident that the
energy-containing, inertial, and dissipation ranges are all captured. We also compute
the flow parameters such as the integral length L, the Kolmogorov length η, the
Taylor microscale λ, and the Reynolds number Reλ. The results are listed in table 1.
The inertial range there has been defined in the space domain (Kolmogorov 1941b).
That is, if δi lies in the inertial range, we have

〈(u(x+ δi)− u(x))3〉 = − 4
5
δi〈ε〉. (17)
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Here 〈ε〉 is the spatial average of the energy dissipation rate. The range determined
from (17) is narrower than that inferred from the energy spectra, as has been reported
in the previous studies (Anselmet et al. 1984).

4. Results
The experimental data are analysed with five families of wavelets: Haar’s,

Daubechies’, Meyer’s, symmetric Harmonic (ϕ = 0), and anti-symmetric Harmonic
(ϕ = π/2). The mean velocity U is subtracted from the original signal, and the signal
is divided into 1200 segments of 8192 points (M = 1200, N = 13). Wavelet trans-
formations are applied to each segment. Moments of the transforms are averaged
over the segments. We first address convergence of the moments, and then use the
moments to investigate the turbulence. The velocity increments are also calculated.
Their results are, if possible, compared with those of the wavelet transforms.

4.1. Convergence of wavelet moments

Higher moments give more weight to the tail of the distribution. If the tail is to
be properly determined, long data are required. To test convergence of the wavelet
moments, we plot (14) as a function of the total number of segments, from M = 1 to
1200 (Anselmet et al. 1984). Figure 4 illustrates the second- and fourth-order moments
of the longitudinal component for Meyer’s wavelet at the scale of j = 9 (solid lines),
together with the structure functions over the corresponding scale (dotted lines). They
are normalized by the final values at M = 1200. Wavelet moments and structure
functions exhibit a number of oscillations, being approximately in phase. With an
increase of the data length, the amplitudes decrease to within 1% of the final values.
Hence statistical uncertainties are less than 1% at M = 1200. We also observe in
figure 4 that convergence is more rapid for second-order moments and for structure
functions than it is for fourth-order moments and for wavelet moments.

The same test has been applied to all the wavelet moments used in this study. The
results are insensitive to the choice of wavelet. However, the convergence depends on
the scale. This is because (i) the total number of transforms 2jM becomes large as the
scale index j is increased, and (ii) the turbulent signal is intermittent at small scales.
The fourth-order moments are uncertain by 5–10% at the largest scale (j = 1), 1–2%
at the integral-length scale (j ' 5), 6 1% at the inertial-range scales (j ' 9), and
1–2% at the smallest scale (j = 12). On the other hand, the statistical uncertainties
of the second-order moments are less than 1% throughout the scales. This is due to
the rapid convergence of the second-order moments.

4.2. Flatness factor

The magnitude of spatial fluctuations of the wavelet transforms is studied at each
scale. We use the so-called flatness factor:

flatness factor =
〈û4〉j
〈û2〉2j . (18)

The flatness factor represents the peakedness or flatness of the probability distribution.
When the distribution is a Gaussian, the flatness factor is equal to 3. A higher value
means that the tail of the distribution is more pronounced than that of a Gaussian.
Thus the flatness factor grows as the distribution becomes more intermittent.

Figure 5 illustrates the flatness factor for the longitudinal (filled circles) and trans-
verse (open circles) components as a function of the wavelet scale δ. The scale is
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Figure 4. Convergence of wavelet moments (solid lines) and structure functions (dotted lines) to
their values at the maximum record length. Second- and fourth-order moments are illustrated.
Wavelet moments are computed with (14) for Meyer’s wavelet at j = 9 (M = 1–1200, N = 13). The
longitudinal component of the laboratory data is used.

computed from (13) and normalized by the Kolmogorov length η. The integral length
L, the Taylor microscale λ, and the inertial-range limits are indicated.

The scale dependence of the flatness factor is evident in figure 5. At large scales, it is
equal to the Gaussian value of 3. As the scale is decreased below the integral length, the
flatness factor begins to increase. Around the Taylor microscale, the increase becomes
significant. Thus the spatial distribution of ûj,k is progressively intermittent. The
transverse component yields a higher flatness factor than the longitudinal component
at all the scales that are below the integral length. For a longitudinal component,
similar features were observed by Meneveau (1991).

There is agreement in figure 5 between different wavelets at this level of description.
However, the significant increase below the Taylor microscale is unclear in the case of
Haar’s wavelet (figure 5a). Compared with the flatness factors for the other wavelets,
that for Haar’s wavelet is high at the Taylor microscale and low at the smaller scales.
We consider that the poor localization of Haar’s wavelet in the wavenumber regime
(figure 1a) has caused some leakage of information among the scales.

Figure 5(a) also shows the flatness factor of the velocity increments (solid lines),
which agrees well with the flatness factor of Haar’s transforms. This agreement sup-
ports the analogy (12)–(13). We have stated in § 2.3 that increments reflect variations
of scale δ or less. When δ 6 L, however, velocity variations of the smaller scales
hold less energy than those of the larger scales, and the major contribution to the
increments comes from variations of scales comparable with δ.

Since the enhancement of the flatness factor is due to the enhanced tail of the
probability distribution, the energies at small scales are expected to be dominated
by a small number of the wavelet transforms. To demonstrate this, for each of the
scales, we compute the number fractions of wavelet transforms with û2

j,k > 〈û2〉j and

û2
j,k > 2〈û2〉j . These wavelet transforms contribute significantly to the scale energies.

The results are illustrated in figure 6. We have used Meyer’s wavelet. Dotted lines
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Figure 5. Flatness factor versus wavelet scale. The bases used are (a) Haar’s, (b) Daubechies’, (c)
Meyer’s, (d) Harmonic with ϕ = 0, and (e) Harmonic with ϕ = π/2. The flatness factor is obtained
with (18) from the laboratory data (M = 1200, N = 13). The wavelet scale δ is defined in (13)
and normalized by the Kolmogorov length η. Filled circles are for the longitudinal component.
Open circles are for the transverse component. Solid lines denote the flatness factor of the velocity
increments. We indicate the integral length L, the Taylor microscale λ, and the inertial range limits.

indicate the values expected for a Gaussian. With decreasing the scale, the number
fractions are in fact decreased from the Gaussian values.

4.3. Scale–scale correlation

Orthonormal wavelets provide a unique opportunity to investigate a correlation in
space between variations of different scales. We explore the correlation of squared
wavelet transforms, i.e. local energies, between the adjacent scales of j − 1 and j.
Though the extents of wj−1,k[n] and wj,k[n] in space are different, those of sj,k[n] and
wj,k[n] are identical (figure 1). Hence the wavelet transforms at the scale of j − 1 are
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values expected for a Gaussian.

converted into the scaling-function transforms at the scale of j for each segment:

ū′m,j,k =

2N−1∑
n=0

2j−1−1∑
k′=0

sj,k[n]
∗ ûm,j−1,k′ wj−1,k′[n]

(1 6 m 6M, 2 6 j 6 N − 1, 0 6 k 6 2j − 1). (19)

Here ∗ denotes complex conjugate. The sum over k′ is to construct a signal from
the wavelet transforms, and the sum over n is to expand the signal into the scaling-
function transforms. Then we calculate Pearson’s correlation coefficient between û2

m,j,k

and ū′2m,j,k:

R =
〈û2ū′2〉j − 〈û2〉j〈ū′2〉j

(〈û4〉j − 〈û2〉2j )1/2(〈ū′4〉j − 〈ū′2〉2j )1/2
. (20)

Here moments are defined as in (14). For instance,

〈û2ū′2〉j =
1

M

1

2j

M∑
m=1

2j−1∑
k=0

û2
m,j,k ū

′2
m,j,k. (21)

The value of R ranges from 0, if there is no correlation, to ±1, if there is a linear
correlation. The sign of R depends on the trend for the values of one quantity to
increase (R > 0) or decrease (R < 0) on increasing the other.

Figure 7 illustrates the correlation between the adjacent scales of j − 1 and j for
the longitudinal (filled circles) and transverse (open circles) components of our grid
turbulence, as a function of the scale of j. Symbols are the same as in figure 5. We have
employed Meyer’s and Harmonic bases. The other bases are of no use. Daubechies’
wavelets do not overlap the scaling functions with the same values of j and k in space
(figure 1b). Haar’s base has turned out to introduce spurious scale–scale correlations
for an artificial random signal (Appendix C). We have ascertained that Meyer’s and
Harmonic bases give zero coefficients for the random signal.
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Figure 7. Scale–scale correlation versus wavelet scale. The bases used are (a) Meyer’s,
(b) Harmonic with ϕ = 0, and (c) Harmonic with ϕ = π/2. The correlation coefficient is ob-
tained with (20) from the laboratory data (M = 1200, N = 13). Filled circles are for the longitudinal
component. Open circles are for the transverse component.

The scale–scale correlation in figure 7 is absent at large scales, and increases as
the scale is decreased below the integral length L. The increase becomes significant
around the Taylor microscale λ. The scale–scale correlation at small scales is better
in the transverse velocity than in the longitudinal velocity. These features are the
same for all the wavelets. Yamada & Ohkitani (1991) obtained a similar result for a
longitudinal component, by using a different diagnostic of scale–scale correlation.

We have also studied the correlation between the scales of j−2 and j as well as the
correlation between the scales of j − 3 and j in the same manner (not shown here).
Their dependences on j are similar to that of the correlation between the scales of j−1
and j. The transverse velocity yields better correlations than the longitudinal velocity
at small scales. With increasing the distance in scale, the scale–scale correlation
becomes less significant at all the j values.

4.4. Longitudinal–transverse correlation

The correlation between wavelet transforms of the longitudinal (u) and transverse (v)
components is studied in space at each of the scales. We again resort to the correlation
coefficient:

R =
〈û2v̂2〉j − 〈û2〉j〈v̂2〉j

(〈û4〉j − 〈û2〉2j )1/2(〈v̂4〉j − 〈v̂2〉2j )1/2
, (22)
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Figure 8. Longitudinal–transverse correlation versus wavelet scale. The bases used are
(a) Haar’s, (b) Daubechies’, (c) Meyer’s, (d) Harmonic with ϕ = 0, and (e) Harmonic with ϕ = π/2.
The correlation coefficient is obtained with (22) from the laboratory data (M = 1200, N = 13). A
solid line denotes the correlation of the velocity increments.

where

〈û2v̂2〉j =
1

M

1

2j

M∑
m=1

2j−1∑
k=0

û2
m,j,k v̂

2
m,j,k, (23)

and so on. The results are illustrated in figure 8 (filled circles). We also plot the
longitudinal–transverse correlation computed from the velocity increments (solid
line), which is in agreement with the correlation of Haar’s transforms. The other
symbols are the same as in figure 5.

The longitudinal–transverse correlation in figure 8 has nearly the same dependence
on scales as the scale–scale correlation in figure 7. At large scales, the longitudinal–
transverse correlation is absent. As the scale is decreased below the integral length
L, the longitudinal–transverse correlation begins to increase. Around the Taylor
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microscale λ, the increase becomes significant. The overall trends in figure 8 are
essentially the same for all the wavelets. However, the rapid increase below the Taylor
microscale is unclear in Haar’s transforms, and in the velocity increments as well
(figure 8a). A plausible explanation is that Haar’s wavelets and increments are not so
localized in the wavenumber regime (see § 4.2).

5. Comparison with numerical and analytic models
Our wavelet analyses of laboratory turbulence have demonstrated the existence

of structures in the velocity field. On the other hand, direct numerical simulations
(Jiménez et al. 1993), bubble-visualization experiments (Douady, Couder & Brachet
1991), and large-Reynolds-number asymptotics (Moffatt, Kida & Ohkitani 1994) have
already established that turbulence includes structures of vorticity ω and dissipation
rate ε:

ω =

((
∂u2

∂x3

− ∂u3

∂x2

)2

+

(
∂u3

∂x1

− ∂u1

∂x3

)2

+

(
∂u1

∂x2

− ∂u2

∂x1

)2
)1/2

, (24)

and

ε =
ν

2

3∑
m=1

3∑
n=1

(
∂um

∂xn
+
∂un

∂xm

)2

. (25)

Here subscripts refer to coordinate directions. Regions of intense vorticity are orga-
nized into tubes, which occupy a small fraction of the volume. The vortex tubes have
radii of the order of the Kolmogorov length. Their lengths are of the order of the
integral length. Dissipation is significant around the tubes. These structures are con-
sidered to be embedded in a background flow field that is random and uncorrelated
(see Nelkin 1994; Frisch 1995; or Sreenivasan & Antonia 1997 for a review).

The effects of these tubes on the velocity fields have not been clarified by the
previous analyses on velocity increments. Hence it is of interest to discuss the results
of our wavelet analyses in terms of the structures of vorticity and dissipation.† Since
reliable measurements of ω and ε in experiments are beyond the reach of the existing
techniques, the discussion concerns a flow created by a direct numerical simulation
of isotropic turbulence. We also analyse an analytic solution of the Navier–Stokes
equation as a model field of the vortex tube.

5.1. Wavelet analyses of a numerical turbulence

This section analyses the result of a direct numerical simulation of forced isotropic
turbulence. The simulation was done on NEC-SX3 in Osaka University Data Process-
ing Center. We assumed a periodic box. There were 128 grid points in each of the three
directions. The forcing was achieved by introducing a negative viscosity coefficient at
a low wavenumber. For the time marching, a Runge–Kutta–Gill method was used.
The dissipating term of the Navier–Stokes equation was exactly integrated, while
the nonlinear term was computed with a pseudo-spectral method. The aliasing was
removed by a phase-shifted polyhedral truncation. The truncation wavenumber was
roughly twice the Kolmogorov wavenumber. The data to be analysed are taken from
a snapshot after the turbulence had settled to a steady state. The basic parameters
are listed in table 2. We have ascertained the presence of vortex tubes in the flow.

† See Yamada & Ohkitani (1991) and Meneveau (1991) for another approach, i.e. the interpre-
tation of wavelet statistics in the context of ‘multifractal’.
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Mean energy E =
∫
E(k)dk = 1.57

Mean enstrophy Ω = 〈ω2〉/2 = 46.0

R.m.s. velocity fluctuation 〈u2〉1/2 = (2E/3)
1/2

= 1.02
Kinematic viscosity ν = 0.00977
Mean energy dissipation rate 〈ε〉 = 2νΩ = 0.898
Integral length L = (2E/3)3/2/(2νΩ) = 1.19

Taylor microscale λ = (5E/Ω)
1/2

= 0.413
Kolmogorov length η = (ν2/(2Ω))1/4 = 0.0319

Reynolds number Reλ = (10/(3Ω))
1/2
E/ν = 43.3

Length of box side 2π
Grid points 1283

Table 2. Numerical flow parameters. The symbols k and E(k) denote the wavenumber and the
three-dimensional energy spectrum, respectively. The inertial range does not exist in the present
data.

For reference, we also study a random-phase signal that is divergence-free and has
the same three-dimensional energy spectrum as the numerical turbulence. Throughout
the scales, the random-phase signal has no spatial structures (Appendix C), contrasting
with the case of the numerical turbulence.

Both in the numerical turbulence and the random-phase signal, wavelet transforms
of velocities are compared with scaling-function transforms of vorticity and dissipa-
tion. Namely, variations of velocities at certain scales are compared with averages of
vorticity and dissipation over such scales. Haar’s base is used.† This is because Haar’s
scaling-function transforms are exactly equivalent to the averages of the signal (see
(10)). The transformations are applied to the data on one-dimensional sections of the
flow field.‡ Each section consists of 128 grid points (N = 7), and is parallel to the
x-, y-, or z-axis. There are 3× 1282 sections in total. Moments of the transforms are
averaged over them (M = 3× 1282).

First we examine correlations of û2 and v̂2 with ω̄ and ε̄. The correlation coefficients
are defined in the same manner as described in § 4. For instance,

R =
〈û2ω̄〉j − 〈û2〉j〈ω̄〉j

(〈û4〉j − 〈û2〉2j )1/2(〈ω̄2〉j − 〈ω̄〉2j )1/2
, (26)

where

〈û2ω̄〉j =
1

M

1

2j

M∑
m=1

2j−1∑
k=0

û2
m,j,k ω̄m,j,k. (27)

Figure 9 illustrates the correlations in the numerical turbulence (filled circles) and
the random-phase signal (open circles). The abscissa is the wavelet scale δ, which is
computed from (13) and normalized by the Kolmogorov length η of the turbulence.
The û2– ε̄, v̂2–ω̄, and v̂2–ε̄ correlations exist both in the turbulence and the random-
phase signal (figures 9b–9d). These correlations increase as the scale is decreased,

† The present analyses are restricted to the individual scales, and thus free from the drawback
that Haar’s base introduces spurious scale–scale correlations (Appendix C).
‡ The longitudinal and transverse directions are defined, respectively, as being parallel and

perpendicular to the one-dimensional section. Since wavelet transforms are equivalent to signal
variations along the section, the difference between longitudinal and transverse components is
always important.
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Figure 9. Wavelet analyses of the data of the direct numerical simulation (filled circles) and
the random-phase signal (open circles): correlations between (a) û2 and ω̄, (b) û2 and ε̄,
(c) v̂2 and ω̄, (d) v̂2 and ε̄. Here û, v̂, ω̄, and ε̄ are transforms of longitudinal velocity, trans-
verse velocity, vorticity, and dissipation. The correlation coefficient is obtained with (26) from
Haar’s transforms (M = 3 × 1282, N = 7). The abscissa is the wavelet scale δ, which is defined
in (13) and normalized by the Kolmogorov length η of the numerical turbulence. We indicate the
integral length L and the Taylor microscale λ of the numerical turbulence.

especially in the turbulence. On the other hand, the û2–ω̄ correlation is present in the
turbulence, but entirely absent in the random-phase signal (figure 9a).

Next we examine (dimensionless) covariances of û2, v̂2, û4, and v̂4 with ω̄4 and ε̄2.
They are defined as, for instance,

C =
〈û2ω̄4〉j
〈û2〉j〈ω̄4〉j . (28)

The covariance is enhanced if large values of one quantity are closely associated
with large values of the other. Figure 10 illustrates the covariances in the numerical
turbulence (filled symbols) and the random-phase signal (open symbols). On decreas-
ing the scale, the covariances in the turbulence become enhanced over those in the
random-phase signal. This enhancement is more pronounced in the covariances of
û4 and v̂4 (circles) than those of û2 and v̂2 (squares). We have also found that the
enhancement is more pronounced in the covariances with higher powers of ω̄ and ε̄
(not shown here).

The results for the random-phase signal are explained as follows. Wavelet trans-
forms of the longitudinal velocity are large, by definition, in regions of significant
longitudinal variations of the longitudinal velocity, where dissipation is strong, as
implied in (25) (Kolmogorov 1962). On the other hand, wavelet transforms of the
transverse velocity are large in regions of significant longitudinal variations of the
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v̂ 2 – ē 2

Figure 10. Wavelet analyses of the data of the direct numerical simulation (filled symbols) and the
random-phase signal (open symbols): covariances between (a) û4 and ω̄4, û2 and ω̄4, (b) û4 and ε̄2,
û2 and ε̄2, (c) v̂4 and ω̄4, v̂2 and ω̄4, (d) v̂4 and ε̄2, v̂2 and ε̄2. Here û, v̂, ω̄, and ε̄ are transforms of
longitudinal velocity, transverse velocity, vorticity, and dissipation. The covariance is obtained with
(28) from Haar’s transforms (M = 3 × 1282, N = 7). Circles are for the covariances of û4 and v̂4.
Squares are for the covariances of û2 and v̂2.

transverse velocity, where vorticity is strong, as implied in (24). Such variations
also cause some dissipation. With decreasing the scale, Haar’s wavelet transforms
are increasingly good approximations to the longitudinal derivatives (see (9)), and
transforms of velocities are increasingly associated with dissipation and/or vorticity.

The results for the numerical turbulence are different from the results for the
random-phase signal. Large values of û and v̂ are more closely associated with
large values of ω̄ and ε̄ in the turbulence than in the random-phase signal. This
means that the turbulence has spatial structures where û, v̂, ω̄, and ε̄ are simul-
taneously enhanced. On the other hand, we have ascertained that vorticity and
dissipation of the numerical turbulence are strong in tube-like regions. There-
fore, in the turbulence, large values of û and v̂ are associated with the tubes.
In figures 9 and 10, the contribution of those coherent structures is appreciable
even above the Taylor microscale λ, and becomes predominant as the scale is de-
creased.

The Reynolds number for the experiment (Reλ = 300) is greater than that for the
simulation (Reλ = 43.3). Hence, for the numerical turbulence, we study the flatness
factor, the number fractions of transforms with û2

j,k > 〈û2〉j and û2
j,k > 2〈û2〉j , the

scale–scale correlation, and the longitudinal–transverse correlation. The results are



246 H. Mouri, H. Kubotani, T. Fujitani, H. Niino and M. Takaoka

0.1

0

6543210

log2 (δ/η)

S
ca

le
–s

ca
le

 c
or

re
la

ti
on

L
λ

û2
j, k > ©û2ªj

û2
j, k > 2©û2ªj

0.2

0.4

0.3

4
3

F
la

tn
es

s 
fa

ct
or

10

50

20

6 L
λ

0.1

0

6543210

log2 (δ/η)

L
on

gi
tu

di
na

l–
tr

an
sv

er
se

co
rr

el
at

io
n

0.2

0.4

0.3

0.1

0

N
um

be
r 

fr
ac

ti
on

0.2

0.4

0.3

L
λ

Lλ

(a) (b)

(c) (d )

Figure 11. Wavelet analyses of the data of the direct numerical simulation: (a) flatness factor
defined in (18), (b) number fractions of wavelet transforms with û2

j,k > 〈û2〉j and û2
j,k > 2〈û2〉j , (c)

scale–scale correlation defined in (20), and (d) longitudinal–transverse correlation defined in (22).
We have used Meyer’s wavelet (M = 3× 1282, N = 7). Filled and open circles in (a–c) are for the
longitudinal and transverse components. Dotted lines indicate the values expected for a Gaussian
random field.

illustrated in figure 11. We have used Meyer’s wavelet.† Since the data embody the
same periodic boundary condition as the wavelet, there is no end effect. The wavelet
statistics for the simulation are in rough agreement with those for the experiment
(figures 5–8), if we consider the differences in the scale range, the integral length L,
and the Taylor microscale λ. Accordingly, when the numerical turbulence is used to
interpret our experimental data, the discrepancy in the Reynolds number is ignored
(§ 5.3).

5.2. Wavelet analyses of a model vortex tube

The present section analyses an axisymmetric solution of the Navier–Stokes equation,
which describes a rigid-body rotation for small radii, and a circulation decaying in
radius for large radii (Taylor 1918):

uθ ∝ r

4ν2t2
exp

(
− r2

4νt

)
. (29)

Here uθ is the tangential velocity and r is the radius. The velocity is maximal at
r = (2νt)1/2 = D/2, as shown in figure 12(a). Thus the flow (29) serves as a model

† The flatness factor is quite high in the dissipation range. This is due to the compactness
of Meyer’s wavelet in the wavenumber domain. When Haar’s base is used, the flatness factor is
relatively low even at the smallest scale: 4.1 for the longitudinal velocity and 5.4 for the transverse
velocity. The same trend is also seen in figure 5.
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Figure 12. Wavelet analyses of the vortex tube (29): (a) radial distribution of the tangen-
tial velocity uθ , the vorticity ω, and the dissipation ε, (b) configuration of the model field,
(c) scale–scale correlation defined in (20) and longitudinal–transverse correlation defined in (22), (d)
total energies of the scales. We have used Meyer’s wavelet (M = 128× 500, N = 7). The abscissa in
(c) and (d) is the wavelet scale δ, which is defined in (13) and normalized by the tube diameter D.

for a vortex tube of diameter D. We study the statistics of the wavelet transforms
computed on one-dimensional sections across the tube with various distances from
its axis.

Figure 12(b) shows the configuration considered in our analyses. The tube axis
is normal to the (x, y)-plane, and penetrates a square on the (x, y)-plane. The value
D is equal to 32−1 of the square side. The square is divided into a grid of 1282

points. There are 128 lines that consist of 128 grid points and are parallel to the
x-axis (dotted lines). To the data on the individual lines, Meyer’s wavelets are applied
(N = 7).† This procedure is repeated 500 times, by randomly moving the axis position.
Moments of the transforms are averaged over the 128 lines and the 500 repetitions
(M = 128× 500).

Figure 12(c) shows the scale–scale and longitudinal–transverse correlations. The
abscissa is the wavelet scale δ, which is computed from (13) and normalized by the
tube diameter D. Throughout the scales, the scale–scale and longitudinal–transverse
correlations are present. Since they are absent in a random and uncorrelated velocity
field (Appendix C), we conclude that the scale–scale and longitudinal–transverse
correlations emerge only when structures like vortex tubes are contained in the flow.

† The velocities have been computed also on points outside the square. These data have been
used to remove the end effect (§ 2.4).
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Figure 12(d) shows the scale energies 2j〈û2〉j and 2j〈v̂2〉j . These energies have peaks
at δ ' D. Vortex tubes contribute mostly to wavelet statistics at the scales that are
comparable with their diameters. The longitudinal component has a less pronounced
peak at a larger scale. This is because, in our model field (figure 12a), the region of
intense dissipation, where û2 is enhanced, is more extended than the region of intense
vorticity, where v̂2 is enhanced. We note that such a geometry is generally seen in the
flow fields of vortex tubes that are considered to exist in turbulence (Moffatt et al.
1994).

Our conclusion remains valid for a more general situation where the axis of (29) is
inclined to the (x, y)-plane. The inclination does not change the form of the velocity
signal (Belin et al. 1996). However, if the axis is inclined to the x-axis, i.e. the
longitudinal direction, the observed size of the tube is greater than its diameter D.
Vortex tubes are able to influence the statistics at scales that are as large as their
lengths.

5.3. Interpretation of experimental results

Now we discuss the implications of the above analyses for our experimental results
in figures 5–8. The features at small scales are studied first. Turbulence includes
tube-like structures of vorticity and dissipation (Douady et al. 1991; Jiménez et al.
1993). The presence of the tubes explains the observed enhancements of the flatness
factor, the scale–scale, and the longitudinal–transverse correlations. The enhance-
ment of the flatness factor is due to large values of û4 and v̂4, which have been
shown to be associated with those tubes (§ 5.1). The scale–scale and longitudinal–
transverse correlations are enhanced if the statistics are dominated by û and v̂ at
the positions of certain structures (§ 5.2). We have shown that this is the situation
in turbulence (§ 5.1). Moreover, the tubes are responsible for substantial fractions
of the energies. We have observed that the scale energies are dominated by small
numbers of û and v̂. The large values of these transforms are now attributable to the
tubes.

Next we study the experimental results at large scales. The tubes are considered
to be embedded in a background flow field that is random, uncorrelated, and mainly
of large scales (Jiménez et al. 1993). We have observed that the flatness factor is
consistent with a Gaussian, and that the scale–scale and longitudinal–transverse
correlations are absent. If the central-limit theorem is applied, our results turn out
to confirm the random and uncorrelated distribution of the large-scale motions
(Appendix C). The flatness factor and the correlation coefficients begin to increase
as the scale is decreased from the integral length. This increase is explained by the
progressive contribution of the tubes (§ 5.1).

The tubes contribute mostly to the wavelet statistics at scales that are comparable
with their sizes in the longitudinal direction, i.e. from their diameters to their lengths
(§ 5.2). The diameters and lengths of the tubes are surely of some ranges. Judging
from our experimental results, the minimum diameter could be down to the order of
the Kolmogorov length, while the maximum length could be up to the order of the
integral length. These estimates are consistent with the previous ones (Douady et al.
1991; Jiménez et al. 1993).

We also present our speculation on the observed tendency that the longitudinal
velocity yields a lower flatness factor and a poorer scale–scale correlation than the
transverse velocity. The contribution of a vortex tube to the wavelet energies at
around the scale of its (observed) size is less pronounced in the longitudinal velocity
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than in the transverse velocity (§ 5.2). Therefore, for the longitudinal velocity, the
effects of the individual tubes might be more liable to be diluted by the background
random field, which could contribute, more or less, to the energies at all the scales.

6. Concluding remarks

The structure of turbulence has been studied by using orthonormal wavelets.
We have measured longitudinal and transverse velocities of a flow behind a grid,
and examined the flatness factor, the scale–scale correlation, and the longitudinal–
transverse correlation of the wavelet transforms. At large scales, the flatness factor
takes the Gaussian value of 3, and the correlation coefficients vanish. As the scale is
decreased from the integral length, the flatness factor and the correlation coefficients
start to increase. The increase becomes significant around the Taylor microscale.
While the large-scale fluid motions are space-filling and random, the small-scale
fluid motions become increasingly sparse and coherent. The small-scale energies are
increasingly dominated by those coherent structures. We have also observed that
the flatness factor and the scale–scale correlation at small scales are greater in the
transverse component than in the longitudinal component.

Wavelet transforms of velocities are large in regions of strong vorticity or strong
dissipation. On the other hand, it is known that vorticity and dissipation of turbulence
are strong in tube-like regions. With a direct numerical simulation, we have demon-
strated that wavelet transforms of velocities are enhanced at the positions of the
tubes. The enhancement becomes significant as the scale is decreased. The presence
of those structures accounts for the observed enhancements of the flatness factor, the
scale–scale, and the longitudinal–transverse correlations. Thus our wavelet analyses
have captured the effects of vortex tubes on velocities measured in the experiment,
which would be difficult for traditional analysis techniques.

We have done the analyses with five different families of orthonormal wavelets.
The results are generally robust with respect to the choice of wavelet. However,
there are exceptions. The scale–scale correlation cannot be studied with Haar’s and
Daubechies’ bases. Furthermore, the flatness factor and the longitudinal–transverse
correlation of Haar’s transforms are equal to those of velocity increments. This is not
necessarily the case for the other wavelets. Haar’s base is poorly localized in scale
and thus unsuitable for general applications. Nevertheless, Haar’s base is useful in
special applications such as a comparison of wavelet transforms of velocities with
scaling-function transforms of vorticity or dissipation.

Finally, we comment on possible discrepancies in wavelet statistics between the
experiment with Reλ = 300 and the simulation with Reλ = 43.3. The flatness factor
and the correlation coefficients at the Taylor microscale λ are somewhat higher in the
experiment than in the simulation (figures 5, 7, 8 and 11). This feature is attributable
to the difference in the Reynolds number. Standard statistical measures such as
skewness and flatness of the velocity derivatives suggest that intermittent structures
change as the Reynolds number is increased (Van Atta & Antonia 1980; Tabeling et
al. 1996). Hence wavelet analyses at the higher Reλ values are of great interest.
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M. Yamada for providing the wavelet algorithm, S. Iwakura for the help in the
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Appendix A. Implementation of Harmonic wavelets
Our formulation of discrete Harmonic wavelets is somewhat different from that in

the original paper (Mouri & Kubotani 1995). Here we outline the present algorithm.
Consider a real input sequence u[n] (n = 0 to 2N − 1). We first multiply u[n] by
exp(−iπn/2N):

u′[n] = exp

(
− iπn

2N

)
u[n] for n = 0 to 2N − 1. (A 1)

The discrete Fourier transformation is applied to the sequence u′[n]:

u′′[m] = 2−N/2
2N−1∑
n=0

exp

(
− i2πmn

2N

)
u′[n] for m = 0 to 2N − 1. (A 2)

The wavelet transform ûj,k (j = 1 to N − 1, k = 0 to 2j − 1) is calculated from the
u′′[m] elements with m = 2j−1 to 2j − 1 and those with m = 2N − 2j to 2N − 2j−1 − 1.
These two sequences are combined into a single sequence u′′′[h]:

u′′′[h] =

{
exp(−iϕ) u′′[h+ 2j−1] for h = 0 to 2j−1 − 1

exp(iϕ) u′′[h− 2j−1 + 2N − 2j] for h = 2j−1 to 2j − 1.
(A 3)

We apply the inverse discrete Fourier transformation to the sequence u′′′[h]. The
results are multiplied by (−1)k exp(iπk/2j). This operation gives

ûj,k = (−1)k exp

(
iπk

2j

)
2−j/2

2j−1∑
h=0

exp

(
i2πhk

2j

)
u′′′[h]. (A 4)

The scaling-function transform ūJ,k (J = 1 to N−1, k = 0 to 2J−1) is tabulated from
the u′′[m] elements with m = 0 to 2J−1 − 1 and those with m = 2N − 2J−1 to 2N − 1.
These two sequences are again combined into a single sequence u′′′′[h]:

u′′′′[h] =

{
u′′[h] for h = 0 to 2J−1 − 1

u′′[h+ 2N − 2J] for h = 2J−1 to 2J − 1.
(A 5)

We apply the inverse discrete Fourier transformation to the sequence u′′′′[h]. The
results are multiplied by exp(iπk/2J):

ūJ,k = exp

(
iπk

2J

)
2−J/2

2J−1∑
h=0

exp

(
i2πhk

2J

)
u′′′′[h]. (A 6)

Then any signal u[n] can be reconstructed as in (8). The inverse procedures yield the
shapes of wavelets and scaling functions from unit vectors in the wavelet representa-
tion:

wj,k[n] = 21−N/2−j/2
2j−1∑
m=2j−1

cos

(
2π
(
m+ 1

2

)( n

2N
− k

2j

)
+ ϕ

)
, (A 7)
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sJ,k[n] = 21−N/2−J/2
2J−1−1∑
m=0

cos

(
2π
(
m+ 1

2

)( n

2N
− k

2J

))
. (A 8)

The wavelet and scaling functions are not periodic with a period of 2N (wj,k[2
N] =

−wj,k[0] and sJ,k[2
N] = −sJ,k[0]). This is due to the operation (A 1). We also note

that those functions are not compact in the usual wavenumber domain. The spectra
in figure 1(d) are from the scalar products with exp (i2π(m + 1

2
)n/2N), instead of

exp (i2πmn/2N).
Harmonic wavelets with different values of ϕ constitute the same multi-resolution

analysis. Transforms at a certain scale for a given value of ϕ are reproduced from
those at the same scale for another value of ϕ via a unitary transformation. The new
transforms follow the same statistical distribution as the original ones, if and only if
it is a Gaussian, however (see Lancaster 1954).

Appendix B. Wavelets and band-pass filters
Our discussion is based on the analogy between wavelet transforms and velocity

increments, which stems from the nature of wavelets in the space regime (§ 2.3). On
the other hand, the nature of wavelets in the wavenumber regime is such that wavelets
act as band-pass filters.

The wavelet transformation is defined as the convolution of a signal with some
weighting functions. This is equivalent to a multiplication of the Fourier transform of
the signal with the corresponding frequency-response functions. The spectral energy
distributions of our wavelets are illustrated in figure 1. They all have a band-pass
character. Thus wavelet functions split the signal into their spectral components. The
scales of the wavelets correspond to the centre frequencies of the band-pass filters,
where the higher frequency represents the smaller scale.

To achieve a clear spectral separation, band-pass filters are required to have sharp
edges. This is not the case for Haar’s base (figure 1a). Using Haar’s base as a filter
leads to a leakage of information among the spectral components. That is why Haar’s
base gives spurious results for the scale–scale correlation, which reflects the degree
of dependence between the individual spectral components (Appendix C). The poor
results for the flatness factor and the longitudinal–transverse correlation are explained
in the same manner (§ 4).

The band-pass character is merely one aspect of the nature of wavelets. The
wavelet transforms are analogous to velocity increments, and are independent of each
other. The latter advantage cannot be achieved by digital band-pass filters (Yamada,
Kida & Ohkitani 1993). Since the filtering process reduces the number of degrees of
freedom, the numerical values of a filtered signal are no longer independent. Hence,
compared with usual band-pass filtering techniques, the wavelet transformation offers
a straightforward approach to study the space–scale structure of turbulence, especially
in statistical analyses.

Appendix C. Wavelet analyses of a random-phase signal
To ensure that our wavelet analyses extract the real properties of turbulence, we

examine the transforms of a random-phase signal. The signal has been created by
the inverse transformation of the Fourier transforms of the numerical turbulence
(§ 5.1), after randomizing their phases uniformly over [0, 2π] without changing their
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Figure 13. Wavelet analyses of a random-phase signal (M = 3 × 1282, N = 7): (a) flatness factor
defined in (18), (b) number fractions of wavelet transforms with û2

j,k > 〈û2〉j and û2
j,k > 2〈û2〉j , (c)

scale–scale correlation defined in (20), and (d) longitudinal–transverse correlation defined in (22).
The bases used are Haar’s (squares) and Meyer’s (circles). The abscissa is the wavelet scale δ. This
scale is defined in (13) and normalized by the Kolmogorov length η of the numerical turbulence,
from which the random-phase signal has been created. Filled and open symbols in (a–c) are for the
longitudinal and transverse components. Dotted lines indicate the values expected for a Gaussian
random field.

amplitudes and divergence-free property (Yamada & Ohkitani 1991; Kevlahan &
Vassilicos 1994). A part of this work has been presented in § 5.1.

Figure 13 illustrates the flatness factor, the number fractions of transforms with
û2
j,k > 〈û2〉j and û2

j,k > 2〈û2〉j , the scale–scale correlation, and the longitudinal–

transverse correlation (M = 3 × 1282, N = 7). The bases used are Haar’s (squares)
and Meyer’s (circles). The abscissa is the wavelet scale δ, which is defined in (13) and
normalized by the Kolmogorov length η of the numerical turbulence. The dotted lines
indicate the values expected for a Gaussian random field.

In figure 13(a), the flatness factor is equal to the Gaussian value of 3. In figure
13(b), the number fractions of transforms with û2

j,k > 〈û2〉j and û2
j,k > 2〈û2〉j are equal

to the Gaussian values. These results are in accord with the central-limit theorem
(Sanada 1990; Yamada & Ohkitani 1991). In figure 13(c), the scale–scale correlation
is absent for Meyer’s base. However, for Haar’s base, the correlation exists. There is a
significant overlap of Haar’s functions at adjacent scales in the wavenumber domain
(figure 1a). The smaller wavenumber in our random-phase signal holds more energy
than the larger one, and causes the observed scale–scale correlation. We have actually
found that Haar’s base yields no scale–scale correlation for a white noise. Finally, in
figure 13(d), the longitudinal–transverse correlation is absent.
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The applications of Daubechies’ and Harmonic wavelets to the random-phase
signal give the same results as in the case of Meyer’s wavelet. Here the end effect
has been removed in the Harmonic transformation. The effect is intrinsically absent
in Daubechies’ and Meyer’s transformations, where the basis functions embody the
same periodic boundary condition as the random-phase signal.
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